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Abstract

The generation of entangled states of two systems from product states is discussed for the

case in which the paths of the two systems do not overlap. A particular method of measuring

allows one to project out the nonlocal entangled state. An application to the production of

four photon entangled states is outlined.

1 Introduction

The importance of non-local entangled states in the study of the Einstein-Podolsky-Rosen paradox

(EPR) has been stressed by Horne, Shimony, and Zeilenger (GHZ) [1]. These states are entangled

states of two or more particles in which at least one pair of particles has space-like separation. Such

states may be produced from independent sources by allowing the particles to scatter from one

another and then separate, or by allowing their paths to overlap spatially such as by passing pairs

of photons through a single beam splitter. The generation of entangled states from independent

particle sources in which the entangled particles overlap has been discussed by Yurke and Stoler

[2], and by Tan, Walls and Collett [3]. We consider the case in which the entangled particles are

produced from independent sources and never overlap.

2 Independent Sources With Path Overlap

We briefly review the work of Yurke and Stoler. Two independent sources each emit a particle

which is passed through a beam splitter and phase shifter. The detection system consists of a pair

of detectors, labeled 1 and 2. Each detector is composed of a beam splitter which directs each

particle to one of two particle counters denoted by R and G. The initial input state is a product

state,

I_' >= I'_ >, I_ >2, (1)

After passing through the system this state may be written as

1

= _{e'°x(lo_R1 >1 +ilotG1 >1) 4- i2[c_R2 >1 +iI_G2 >1}

i2[13 R1 >2 +il/3Gl >2 +e'°;(]/_ R2 >2 +i[/_a2 >2)} (2)
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where the i's come from the reflection off the beam-splitters. If we consider the case in which only

the R detectors register, the only part of the state that we look at is

ei{°l+°2)[aR1 >1 [/_R2 >2 -taR2 >1 [/_R1 >2 (3)

which is an entangled state. By varying the phase shifters, interference between the two terms can

be detected. This interference occurs because there are two distinct paths from the input state to

the detection state that can not be distinguished by the detectors. From this point of view [4] the

fact that "vacuum" enters the system through the beam splitters plays no role since the detectors

do not see the vacuum states.

3 Independent Sources Without Path Overlap

We now turn to a different method of generating entangled states in which the independent

sources are independently detected. The particle paths never cross. The entanglement is obtained

by selective detection and the interference is caused by varying the phase shift in each path in a

specific way. We shall see below that this allows us to consider the generation of an EPR state of

the type envisioned by GHZ. We illustrate this technique for the simplest case, namely, two spin-

1/2 particles. The input to the system is two independent particles polarized along the positive

z-axis,

Iqj >= l+ z >, 1+ z >2. (4)

Each particle is passed through a separate Stern-Gerlach apparatus which splits each state vector

into a superposition of states polarized along the x-axis. After passing through the system we

have

I_' >= 2{I+ x >1 +e'°'l- x >1}{I+ • >2 +_'°'l- • >2}, (5)

where the phase shifter effect has been included. Multiplying (5) out gives

1

I¢' >= 2{I+ • >1 I+ • >5 +_(e'+e_)l- x >1 l- x >_ +
e'_'l- x >1 I+ x >_ +e'_l + • >1 I- • >_}. (6)

Then we project this onto the detector states

[+ zk >= ---_2_2([+ x >k +[- x >2), k=1,2. (7)IDk>:

The amplitude for detecting particle 1 at detector 1 and particle 2 at detector 2 is:

A= 1(1 + e'°_)(1 +e'°2)= 1{(1 + e'(°'+°_))+ (e '°_ + e'er)}, (8)

which is still a product for independent choice of phases. Now if we choose 02 = 01 + _r, then the

second pair of terms in (8) cancel and the first shows interference as 01 is varied,

= 17(1- _'_,) (9)A
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This is equivalent to producing the entangled state given by the first two terms of (6).

In this case the two independent particles never meet. Here the interference is between the

pair of particles that went through the phase shifter and the pair that did not. From the point of

view of indistiguishable paths, it is the paths of these two-particle states that are indistiguishable.

Another way to look at this particular example is to note that the choice of the angles makes the

first two term in (6) total spin 1 states and the second two form a total spin 0 state, the detector

only detects the spin 1 part of the state.

This argument can be generalized to more than two particles and can be used to form the

basis of many-particle interference experiments to test the theorem of Greenberger, Horne and

Zeilenger [5]. The use of projection operators to pick off parts of state vectors, which is really

what measurements do, is nothing new. It is fundamental to quantum theory. What is different

is the means of picking off nonlocal entangled states from independent particles.

4 The Theory of the Four-Photon Experiment

We now apply this to a possible four-photon interference experiment. We wish to show how

one can produce the highly correlated state necessary to carry out the experiment envisioned by

Greenberger, Home and Zeilenger. In fig. 1 we show the experiment envisioned. It is a double

Franson interferometer [6]. The coincidence counting rate is proportional to

(10)

where the integrals are over the duration of the measurement. The function S expresses the fact

that the coincidence time window is one when t2 - tl, t3 - tl and t4 - tl are all less than some

small coincidence time tcoi, and rapidly goes to zero when this is not true.

1

(I)j(t,, t2) = -_(t_j(L,,L_) -I- Cj(S,, L2) + kOi(L,, $2) + t_j(S,,S2)), (11)

where j=I and II . The middle two terms can be discriminated against for L - S = AL if

A L/c >> tcoi,. Then we can confine ourselves to considering

Cj(t,,t2) = _{¢j(L,,L2) + _j(S,,S2)}. (12)

The amplitude in (12) is still a product,

l({_(Lt, LI)_It(LII, LII) -t- qdI(S1, 81)t_11(SIl, SII)} .4_

{_(LI, Lt)_21t(StI, Sit) + _l_(St, SI)¢H(LH, Lift)}). (13)

This is in a form similar to that of (5). We now want to show how the last term in curly brackets

can be made to vanish.

We have shown elsewhere [7] that the two-photon wave function is of the form

= - + (14)
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The function u(t) describes the correlation of the photon pair in space and time. Its width is

determined by the single photon bandwidth. This is usually fixed by filters in the output beams

of the down-conversion crystal. The function v(t) is of the form

v(t) = A(t)e -'9"_, (15)

It expresses the fact that the pair is created somewhere within the overlap of the crystal and the

pump beam. In general, if the pump beam is nearly monochromatic, A will be a slowly varying

function of time.

Using these facts, the second term in curly brackets of (13) can be written as

2ALH) + v(t, + t2 2ALl)v(t3+ t4)}.
u(t, - t2)u(t3 - t4){v(tl + t2)v(t3 + t4 c c

The key point is that we can choose the path lengths so that

(16)

(17)

making the relative phase between the two terms in the bracket of (16) negative. Since A(t) is

constant over the measurement time this term will vanish. The first term in curly brackets has

two terms with a relative phase of nv(AL_ + ALH)/c which, under the condition stated, becomes

+ f_v2AL1/c. Therefore varying the path length while keeping their difference fixed allows one
to see interference with oscillations at half the pump wavelength.

The above experiment is for space-time variables. There is a more convenient way to proceed

using the polarization of the photons.

5 Acknowledgments

After this paper was completed a related paper on the generation of entangled states from in-

dependent sources [8] was called to our attention. We thank Professor Zeilinger for giving us a

preprint of this paper.
This work was supported by Office of Naval Research Grant No. N00014-91-J-1430.

References

[1] M. A. Horne, A. Shimony, and A. Zeilenger, Phys. Rev. Lett. 62, 2209 (1989).

M. A. Horne, A. Shimony, and A. Zeilenger,Quantum Coherence, edited by J. S.

Anandan, (World Scientific Co. Pte. Ltd, Singapore,1990).

[2] B. Yurke and D. Stoler, Phys. Rev. Lett. 68, 1251 (1992) and Phys. l:tev. A 46, 2229

(1992).

[3] S. M. Tan, D. F. Walls and M. J. Collett, Phys. Rev. Lett. 66, 252 (1991).

[4] This point of view is the natural one from the point of view of Feynman's approach

to quantum mechanics, R. P. Feynman, R. B. Leighton, and M Sands, The Feynman

Lectures on Physics, Quantum Mechanics, (Addison-Wesley, Reading,MA, 1965).

566



[5] D. M. Greenberger, M. Horne and A. Zeilenger, in Bells Theorem, Quantum Theory

and Conceptions of the Universe, edited by M. Kaftos (Kluwer Academis, Dordrect,
1989).

[6] J. D. Franson, Phys. Rev. Lett.62, 2205 (1989).

[7] Y. H. Shih and Morton H. Rubin, to be published

[8] M. Zukowski, A. Zeilinger, M. A. Horne and A. K. Ekert, private communication.

567



/

/

/

/

Pump

D1

2 %%%

D4

coincidence

counter

Figure 1: A pump beam enters two crystals which each produce a pair of photons by optical

parametric downconversion. Each photon passes through an interferometer and is detected by

one of the four detectors (Dk). A coincidence counter (C) gives a count only when all four

photons arrive within a fixed time window.
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